39-EDD

De Wiki Purdal
Saltar a: navegación, buscar

Dot-Guide for 39-EDD instruments

39-EDD Fretboard is based on the formula (Scale_Length/(2^(x/39))). Well, with a first certain, Charles Clagget (1740? - 1795, Ireland) did an instrument, a piano with 39 equal intervals per Ditave, called by he, Teliochordon (little extract here). 39-EDD is a system that no calls much the attention, include betweeen xentonal-ekmelic-xenharmonic dudes, maybe a unique piece made by Ivor Darreg called 39 notes FM Synth and Carrillon. Is interesting how fits very well the Armodue notation on 39-EDD like 1/5-tone 5;2 Relation, making of it a quick assimilation for an easy learning of this special Tuning over this special EDD together.

So, a first instance for a dot-guide on 39-EDD fretboard is this :

Diapasón 39-EDD 0.png

The dots are in the places 7· 12· 17· 22· 27· 32· 39: 46· 51· 56· 61· & 66· denoting a scale of 2L5s 7;5 Relation, 7 5 5 5 5 5 7.

A second integer for a dot-guiding is this :

Diapasón 39-EDD 1.png

The dots are in the places 7· 8· 15· 16· 23· 24· 31· 32· 39: 46· 47· 54· 55· 62· & 67· denoting a scale of 5L4s 7;1 Relation, 7 1 7 1 7 1 7 1 7.

Step (form 1) Purdal size Cent size | Step (form 2) Purdal size Cent size
01 253,85 30.769 | 01 253,85 30.769
02 507,69 61.538 | 02 507,69 61.538
03 761,54 92.308 | 03 761,54 92.308
04 1015,38 123.077 | 04 1015,38 123.077
05 1269,23 153.846 | 05 1269,23 153.846
06 1523,08 184.615 | 06 1523,08 184.615
07· 1776,92 215.385 | 07· 1776,92 215.385
08 2030,77 246.154 | 08· 2030,77 246.154
09 2284,62 276.923 | 09 2284,62 276.923
10 2538,46 307.692 | 10 2538,46 307.692
11 2792,31 338.462 | 11 2792,31 338.462
12· 3046,15 369.231 | 12 3046,15 369.231
13 3300 400 | 13 3300 400
14 3553,85 430.769 | 14 3553,85 430.769
15 3807,69 461.538 | 15· 3807,69 461.538
16 4061,54 492.308 | 16· 4061,54 492.308
17· 4315,38 523.077 | 17 4315,38 523.077
18 4569,23 553.846 | 18 4569,23 553.846
19 4823,08 584.615 | 19 4823,08 584.615
20 5076,92 615.385 | 20 5076,92 615.385
21 5330,77 646.154 | 21 5330,77 646.154
22· 5584,62 676.923 | 22 5584,62 676.923
23 5838,46 707.692 | 23· 5838,46 707.692
24 6092,31 738.462 | 24· 6092,31 738.462
25 6346,15 769.231 | 25 6346,15 769.231
26 6600 800 | 26 6600 800
27· 6853,85 830.769 | 27 6853,85 830.769
28 7107,69 861.538 | 28 7107,69 861.538
29 7361,54 892.308 | 29 7361,54 892.308
30 7615,38 923.077 | 30 7615,38 923.077
31 7869,23 953.846 | 31· 7869,23 953.846
32· 8123,08 984.615 | 32· 8123,08 984.615
33 8376,92 1015.385 | 33 8376,92 1015.385
34 8630,77 1046.154 | 34 8630,77 1046.154
35 8884,62 1076.923 | 35 8884,62 1076.923
36 9138,46 1107.692 | 36 9138,46 1107.692
37 9392,31 1138.462 | 37 9392,31 1138.462
38 9646,15 1169.231 | 38 9646,15 1169.231
39\0: 9900\0 1200\0 | 39\0: 9900\0 1200\0

Another dot-guide for a 39-EDD fretboard is :Diapasón 39-EDD 2.png

The dots are in the places 7· 14· 16· 23· 25· 32· 39: 46· 53· 55· 62· & 64· denoting a scale of 5L2s 7;2 Relation, 7 7 2 7 2 7 7.

Step Purdal size Cent size
01 253,85 30.769
02 507,69 61.538
03 761,54 92.308
04 1015,38 123.077
05 1269,23 153.846
06 1523,08 184.615
07· 1776,92 215.385
08 2030,77 246.154
09 2284,62 276.923
10 2538,46 307.692
11 2792,31 338.462
12 3046,15 369.231
13 3300 400
14· 3553,85 430.769
15 3807,69 461.538
16· 4061,54 492.308
17 4315,38 523.077
18 4569,23 553.846
19 4823,08 584.615
20 5076,92 615.385
21 5330,77 646.154
22 5584,62 676.923
23· 5838,46 707.692
24 6092,31 738.462
25· 6346,15 769.231
26 6600 800
27 6853,85 830.769
28 7107,69 861.538
29 7361,54 892.308
30 7615,38 923.077
31 7869,23 953.846
32· 8123,08 984.615
33 8376,92 1015.385
34 8630,77 1046.154
35 8884,62 1076.923
36 9138,46 1107.692
37 9392,31 1138.462
38 9646,15 1169.231
39\0: 9900\0 1200\0

Note that here in all the fretboards, the first dot starts on the 7th fret-space (and its inverse on the 32nd fret-space).